4.4. 正则化成像方法¶
4.4.1. 正则化成像¶
SAR imaging process can be formulated as
\[{\bm s} = {\bm A}{\bm g},
\]
where, \({\bm s}\) is the \(MN\times 1\) recieved SAR raw data vector in phase history domain, \(\bm g\) is the \(HW \times 1\) reflection vector of scene, and \(\bm A\) represents the the mapping from scene to SAR raw data.
Given \(\bm s, \bm A\) , regularization methods try to reconstruct \(\bm g\) by minmizing
\[\mathop {\rm min}\limits_{\bm{g}} {\left\| {{\bm{Ag}} - {\bm{s}}} \right\|_2} + \lambda |{\bm{g}}{|_p},
\]
where, \(\lambda\) is the balance factor, and \(|\cdot|_p\) is the \(\ell_p\) norm.
Note that, if \({\bm s, A, g} \in {\mathbb C}\) , the problem changes to
\[{\mathop{\rm Re}\nolimits} ({\bm{s}}) + j{\rm Im}({\bm{s}}) = {\rm Re}({\bm{Ag}}) + j{\mathop{\rm Im}\nolimits} ({\bm{Ag}})
\]
so we have:
\[\left[ {\begin{array}{ccc}
{{\mathop{\rm Re}\nolimits} ({\bm{s}})}\\
{{\mathop{\rm Im}\nolimits} ({\bm{s}})}
\end{array}} \right] = \left[ {\begin{array}{ccc}
{{\mathop{\rm Re}\nolimits} ({\bm{A}})}&{ - {\mathop{\rm Im}\nolimits} ({\bm{A}})}\\
{{\rm Im}({\bm{A}})}&{{\mathop{\rm Re}\nolimits} ({\bm{A}})}
\end{array}} \right]\left[ {\begin{array}{ccc}
{{\mathop{\rm Re}\nolimits} ({\bm{g}})}\\
{{\mathop{\rm Im}\nolimits} ({\bm{g}})}
\end{array}} \right]
\]