5.2. 多普勒中心估计

5.2.1. 引言

多普勒中心频率简称多普勒中心, 用于估计多普勒中心频率的算法通常称为多普勒中心估计器(Doppler Centroid Estimator, DCE).

  • 是什么

  • 为什么

  • 怎么做

多普勒中心频率组成

(5.18)fηc=fηc+MaFsaf_{\eta_c} = f_{\eta_c}^{\prime} + M_a F_{sa}

其中, fηcf_{\eta_c} 为方位向绝对多普勒中心频率, fηcFsa/2,Fsa/2f_{\eta_c}^{\prime}\in {-F_{sa}/2, F_{sa}/2} 为方位向基带多普勒中心频率, 也称为 fηcf_{\eta_c} 的小数部分, MaZ+M_a\in {\mathbb Z}^+ 为多普勒模糊数, FsaF_{sa} 为方位向采样率, MaFsaM_aF_{sa} 称为 fηcf_{\eta_c} 的整数部分. 多普勒中心频率估计通常是估计小数部分频率, 多普勒中心频率估计算法通常称为多普勒中心估计器(Doppler Centroid Estimator, DCE), 估计后的频率通常称为精细(fine)多普勒中心频率; 多普勒模糊数估计算法通常称为多普勒模糊求解器(Doppler Ambiguity Resolver, DAR), 多普勒中心与多普勒模糊数的估计通常是不独立的.

多普勒中心不仅受方位向的运动影响, 也会随着距离向距离的改变而改变, 所以同时需要估计不同距离单元的多普勒中心, 并用多项式函数拟合的方法来得到准确的估计 [2].

5.2.2. 传统估计方法

5.2.3. 怎么做