6. 参考文献

1

同武勤 and 樊祥. 毫米波合成孔径雷达成像技术. 火力与指挥控制, 31(3):78–封三, 2006.

2

魏志强, 李春化, 周子超, 苏小敏, 李雅梅, and 王乐. 毫米波安检成像雷达设计. 火控雷达技术, 42(3):5–10, 2013.

3

Anatoliy O. Boryssenko, Dmitriy L. Sostanovsky, and Elen S. Boryssenko. Portable imaging uwb radar system with two-element receiving array. In Carl E. Baum, Alexander P. Stone, and J. Scott Tyo, editors, Ultra-Wideband Short-Pulse Electromagnetics 8, pages 153–160. Springer New York, New York, NY, 2007. doi:10.1007/978-0-387-73046-2{\textunderscore }21.

4

Margaret Cheney and Brett Borden. Synthetic aperture radar imaging. In Otmar Scherzer, editor, Handbook of mathematical methods in imaging, volume 5 of Springer reference, pages 655–690. Springer, New York, 2011. doi:10.1007/978-0-387-92920-0{\textunderscore }15.

5

G. Brooker, J. Martinez, and R. Hennessey. Millimetre wave radar imaging of mining vehicles. In The 7th European Radar Conference, 284–287. 2010.

6

D. S. Goshi, Y. Liu, K. Mai, L. Bui, and Y. Shih. Recent advances in 94 ghz fmcw imaging radar development. In 2009 IEEE MTT-S International Microwave Symposium digest, 77–80. [Piscataway, N.J.], 2009. IEEE. doi:10.1109/MWSYM.2009.5165636.

7

K. Jin, W. Chang, Z. Li, and J. Yang. Imaging of space targets in fmcw-isar. In IET International Radar Conference 2013, 0701. Stevenage, England, 2013. IET. doi:10.1049/cp.2013.0214.

8

D. Korneev, L. Bogdanov, A. Nalivkin, and S. Berezin. 3d imaging system based on fmcw millimeter wave radar. In Kenneth J. Button and G. R. Neil, editors, IRMMW-THz 2005, 367–368. Piscataway, N.J., 2005. IEEE. doi:10.1109/ICIMW.2005.1572565.

9

S. A. Kuznetsov, S. N. Makarov, V. N. Koshelenko, M. A. Astafev, and A. v. Arzhannikov. 140 ghz active imaging systems based on fmcw radar. In 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2014, 1–2. Piscataway, NJ, 2014. IEEE. doi:10.1109/IRMMW-THz.2014.6956097.

10

David Macfarlane and Duncan Robertson. A 94ghz real aperture 3d imaging radar. In Proceedings of the 3rd European Radar Conference, 154–157. London, 2006. Horizon House Publications. doi:10.1109/EURAD.2006.280297.

11

N. Pohl, T. Jaeschke, and M. Vogt. An sige-chip-based 80 ghz fmcw-radar system with 25 ghz bandwidth for high resolution imaging. In 2013 14th International Radar Symposium (IRS), volume 1, 239–244. 2013.

12

P. Alizadeh, C. Parini, and K. Z. Rajab. A low-cost fmcw radar front end for imaging at 24 ghz to 33 ghz. In 2015 Loughborough Antennas Propagation Conference (LAPC), 1–4. 2015. doi:10.1109/LAPC.2015.7366007.

13

James Schellenberg, Richard Chedester, and John McCoy. Multi-channel receiver for an e-band fmcw imaging radar. In IEEE MTT-S International Microwave Symposium, 2007, 1359–1362. Piscataway, NJ, 2007. IEEE Service Center. doi:10.1109/MWSYM.2007.380465.

14

S. Xu, J. Wang, and A. Yarovoy. Super resolution doa for fmcw automotive radar imaging. In 2018 IEEE Conference on Antenna Measurements Applications (CAMA), 1–4. 2018. doi:10.1109/CAMA.2018.8530609.

15

Z. Peng, J. Muñoz-Ferreras, R. Gómez-García, L. Ran, and C. Li. 24-ghz biomedical radar on flexible substrate for isar imaging. In 2016 IEEE MTT-S International Wireless Symposium (IWS), 1–4. 2016. doi:10.1109/IEEE-IWS.2016.7585400.